Kvartiilidevaheline vahemik - mis see on, määratlus ja mõiste

Kvartiilidevaheline vahemik on andmekogumi hajumise mõõt, mis väljendab esimese ja kolmanda kvartiili erinevust või kaugust.

Teisisõnu on interkvartiilide vahemik kasti joonisel kasutatud jaotuse eelviimase ja esimese kvartiili erinevus. Kasutatakse tavaliselt kasti graafikus, kus keskmõõduna kasutatakse mediaani.

Kvartiilidevahelise vahemiku nimetamise lühendatud viis on RIC või RQ.

Kvartiilidevaheline vahemik kasutab keskmõõduna mediaani. Siis on interkvartiilide vahemiku tulemus lähedane mediaanile või teisele kvartiilile (Q2), kui äärmuslikke väärtusi on vähe.

Kvartalidevahelist vahemikku peetakse tugevaks statistikaks, kuna sellel on vähe kokkupuuteid äärmuslike väärtustega. Seda seetõttu, et arvesse võetakse ainult kolmanda ja esimese kvartiili vaatlusi. Kõik vaatlused, mis jäävad sellest vahemikust välja, jäävad arvutusest välja ja seetõttu võetakse arvesse ainult mediaanile, see tähendab teisele kvartiilile, kõige lähemal olevaid vaatlusi.

Esimese ja kolmanda kvartiili vaheliste mitme äärmusliku väärtuse olemasolu suurendab oluliselt interkvartiilide vahemikku ja ka mediaani, kuid väiksema kiirusega. Selline olukord on ebatõenäoline, kuna väga äärmuslikke andmeid kipub olema harva.

Kvartiilidevaheline vahemiku valem

Teades, et kvartiilidevaheline vahemik on erinevus kolmanda kvartiili (Q3) ja esimese kvartiili (Q1) vahel, peame lihtsalt tegema vahet mõlema väärtuse vahel.

IQR = Q3 - Q1

Kvartiilidevahelise vahemiku mäletamise võti

Selle statistilise mõõtme lihtsaks ja kiireks mäletamiseks peame mõtlema kvartiilidevahelisse vahemikku. Kvartiilidevahelised vahendid kvartiilide ja vahemiku vahel on kahe punkti vaheline kaugus. Niisiis saame kvartiilidevahelisest vahemikust aru kui kahe kvartiili kaugusest või erinevusest. Need kaks kvartiili on kolmas kvartiil (Q3) ja esimene kvartiil (Q1).

Kvartiilidevahelise vahemiku näide

Eeldame, et tahame arvutada kvartalidevahelise vahemiku ja aasta jooksul meie maja eest mööduvate jalgratturite arvu hälbe.

  1. Kõigepealt loeme ratturid kokku ja kogume teabe tabelisse.
  1. Teiseks arvutame kvartiilidevahelise vahemiku arvutamiseks vajalikud kvartiilid.

Q3 = 525

Q1 = 200

IQR = Q3 - Q1 = 525 - 200 = 325

Selle andmekogumi kvartalidevaheline vahemik on 325. Mida suurem on kvartiilidevaheline vahemik, seda suurem on andmete hajuvus.

Lemmik Postitused

Hispaania majandus ja selle sektorid kiirendavad oma kasvu veelgi

Hispaania majandus on kõigis oma sektorites heas tõusujoones. Hispaania tööstus juhib majanduse kasvu tugeva tõusuga, mis ulatub 12,5% -ni. Teenindussektor pole sellest kaugel ja saavutab 8,5% -lise tagasilöögi, millega see aheldab 45 kuud aastakasvust. Peamised institutsioonidLisateave…

Brasiilia valitsus, kes on läbi ajaloo rängima majanduslanguse sattunud raskustesse

Veel üks kaheksas järjestikune kvartal järjest kahanev Brasiilia majanduse järjekordne tagasilöök osutab sellele tõsiasjale Michel Temeri valitsuse ees seisvale väljakutsele ja pöörab kogu tähelepanu Brasiiliale - majandusele, mis pole viimastel aastatel sedavõrd tagasilööki kannatanud. 20 aastat. Brasiilia, majandus, millel on rohkem…

Hispaania suurimad pangad

Hispaania finantssektoris on kümme aastat kestnud väga oluline panganduse konsolideerimine. Seetõttu oleme lisaks Hispaania suurimate pankade nimekirjale lisanud skeemi, kus näete Hispaania pankade konsolideerimisprotsessi, millised pangad on kasutusele võetud ja millised pangad. Loendi 3 parimat…